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Abstract--The shape and size of a bubble formed slowly on a sharp- or round-edged orifice are derived with 
the help of a new analytical solution for the bubble profile. Two modes of formation are distinguished, 
depending on the natural contact angle, ¢o: bubble confined to the orifice (~o small); bubble spreading 
beyond the orifice (~o large : Fritz mode). The limits of the slow-formation regime in mucleate pool boiling 
are estimated, involving an assessment of the influences of liquid inertia, viscosity and surface-tension 
gradients. 

"'Slow" formation is predicted for large cavities or high pressures and this is borne out by data for 
water. The Fritz mode of growth, however, is seen to be suppressed. 

I. INTRODUCTION 

This size and shape of vapour bubbles formed on a horizontal heated surface in nucleate pool 

boiling are affected by so many factors that a general description would be very complex and is 
certainly not available at the present time. These factors include gravity, surface tension, 

contact angle, geometry of the heated surface, thermal properties, inertia and viscosity of both 
phases and gradients of temperature and so of physical properties. Under certain conditions 

however the influences associated with the rate of growth may be expected to become minor 
and the size and shape at detachment should then be governed by the first four "static" factors. 

The character and limits of this "slow-formation" regime are examined below and the 

results compared with experiment. The case of slow, isothermal growth on a sharp-edged orifice 

is considered first, since this case is now fairly thoroughly understood. It is seen that there are 

two possible modes of growth: mode A, in which the bubble boundary is the cavity edge, and 
mode B, in which the bubble spreads beyond the cavity. Which mode occurs depends on the 

magnitude of the contact angle. Bubble volume formulae are obtained for both modes, that for 
mode B providing an analytical justification of the well-known Fritz formula. The case of a 
round-edged orifice is also analyzed, after which the limits of the slow-formation regime are 
examined. 

Comparison with pool boiling results for water largely corroborates the expectations but 

yields the unexpected result that mode B growth, on which so many heat-transfer correlations 

are based, does not occur in the cases examined, despite authors'  contentions to the contrary. 
This is attributed to the slowness with which a contact angle attains its equilibrium value. 

2. SIZE AND SHAPE OF BUBBLES FORMED SLOWLY ON A ROUND. 
SHARP-EDGED, HORIZONTAL ORIFICE UNDER ISOTHERMAL CONDITIONS 

B u b b l e  shape  

Provided flow into or out of the bubble is sufficiently slow, the associated pressure 
variations and viscous stresses are negligible and the pressure variation in the two fluids is 
simply that required to balance gravitational forces: 

Pc = P~g Y + const., [1] 

PL = a L g Y  + const. [2] 

where p, g and Y denote respectively pressure,  acceleration due to gravity and distance 
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measured vertically downwards from the bubble apex (figure 1, which also defines X), and the 
suffixes G and L refer to gas and liquid. The interface condition is 

Pc - PL = or + [3] 

where viscous stresses have again been neglected and or denotes the (constant) surface tension, 
Ro is the radius of curvature of the interface in the plane of the Y axis and Rb that in the 
perpendicular plane containing the normal. 

Elimination of Pc and Pt. from [l] to [2], together with the requirement that Ro = Rb = R 
(the radius of curvature of the bubble apex) at Y = 0, yields 

where 

[41 

P : PL - Pa. [5] 

Substitution of the appropriate expressions for Ra and Rb yields the following ordinary 

differential equation for the bubble profile: 

d2y 1 dY 
dX 2 X dX 2 

[, 1 dY 2 s/2+ R 

+ \d--)~/J 

#gY 
Or 

[61 

or, in terms of the dimensionless coordinates x(= X/R) and y(= Y/R), 

where 

d2y l ( d y )  
dx 2 x dxx 

[l + [dY]2]s/2+ [ ' + {dy]z]'A = 2 -  ] k-d-x] ] 
t7] 

B = PgR2/or. [8] 

The dimensionless parameter /3 thus evidently determines the shape of the profile while R 

determines the scale. 
The only exact analytical solution of [7] is for/3 = 0 (corresponding to zero gravity) when, as 

expected, the profile is a circle. Numerical solutions exist for various /3 values 
(Hartland & Hartley 1976) and an analytical solution which is a good approximation if 

fl~<O.l [9] 

~ X 

tongent 

Figure 1. Choice of coordinate system. 



MODES OF B U B B L E  GROWTH IN NUCLEATE POOL BOILING 281 

has recently been obtained by the author (Chesters 1977). Since [9] is satisfied in many boiling 

situationst this approximate analytical solution is assumed to apply in what follows unless 

otherwise stated. 
The type of profile obtained is illustrated in figure 2 for the case fl = 0.0955. The points 

represent the numerical solution of Hartland & Hartley (1976). The profile is seen to resemble a 
circle closely up to the underside where it deflects away from the Y axis to form a neck. In the 

neck region (x ~X/~)  the variation of 0 (= tan-: (dY/dX)=tan-: (dy/dx): figure 1 with x is 
given to the first order in/~ by 

sin 0 = x + 2/3/3x, [10] 

from which follows 

and 

xt = ~/(2fl/3), [111 

sin 0r = 2~/(2fl/3) (radians). [12] 

xN = 2///3 [131 

where I and N are respectively the inflexion point (where dOIdx = 0) and the neck point (where 
0 = 90°): figure I. The volume, V, of the bubble above any horizontal plane cutting the profile in 
the neck region is 

V = ~ ¢rR3(l + fl) [14] 

to the first order in/3. 

Boundary conditions 
The equilibrium of the contact line between a gas, a liquid and a solid plane (figure 3a) 

requires equilibration of the three interfacial tensions which are associated with the cor- 
responding interracial free energies (Davies & Rideal 1963): 

tr' + cos~o = 0"". 

Since the three tr are fixed for given media, so is ~0, the natural contact angle. 

P= 0 . 0 9 5 % _  

Figure 2. 

solid s I 

Ftgure 3a. Figure 3b. 

Figure 2. Analytical (--Chesters 1977) and numerical (Hartland & Hartley 1976) solutions for the bubble 
profile. 

Figure 3. Contact angle at a solid plane, (a) with and (b) without a sharp edge. 

tFor water at 100°C, for example, [9] requires that 2R -< 1.6 mm. 
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The exception to this statement is when the solid terminates in a sharp edge (figure 3b) when 

any value of the contact angle ~0 greater than ¢o is found to be stable. As noted elsewhere 

(Chesters 1977) the explanation is probably that the actual contact line stabilizes itself a 

microscopic distance 8 (of the order of the range of the intermolecular attraction forces) away 

from the edge, so that tr" depends on 8. The smaller 8, the smaller tr" and the larger ~,. ~o = ~o, 

however, corresponds to 8 = oo and values of ~o less than ~Oo cannot be maintained but result in 

macroscopic motion of the contact line away from the edge until ~o becomes equal to ¢o. 

The two related modes of growth are illustrated in figures 4a and 4b. If, during the growth 
process, ~0 falls to ~oo, spreading occurs (mode B). 

Bubble  size at detachment:  mode A 

When growth occurs according to mode A (figure 4a), the scale of the profile (i.e. the value 

of R) reaches a maximum when the plane of attachment reaches the point N. Displacement of 

the plane of attachment beyond N diminishes the volume enclosed by the profile above N. 

Unless this diminution is compensated by a greater increase in the volume enclosed below N 

(the shaded zone in figure 4a), the maximum volume has been reached and the bubble 

detachest. For small values of fl this situation occurs when the plane of attachment is just 

beyond, but very close to, the point N (Chesters 1977). The maximum volume is thus given by 
[14], while [13] yields 

r 2fl 
xN R 3 [15] 

where r is the radius of the orifice. Equation [15] can be written 

R 3 = 3rtr/2pg. [16] 

Substituting [16] in [14] the maximum volume of the bubble is seen to be given to the first 
approximation by 

2~rrtr 
Vmax - [17] 

Pg 

Figure 4a. Mode A bubble growth. 

) ,  I • / 
/ 

x i I 
, k 

Figure 4b. Mode B bubble growth. 

tOn orifices of radius greater than 3.219~o-/pg) u2 detachment occurs at an earlier stage of growth due to an instability of the 
profile to small perturbations: Pitts (1976), Michael & Williams (1976). However, since this critical orifice radius is of the order 
of I cm, this mechanism is not relevant to the present considerations. 
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o r  

where a is the capillary length 

Vmax r 
= 2~r -a [181 

a = ~/(o./pg) = Rl~/[3. [19] 

A more accurate expression for Vm~, can be obtained from a force balance since ~o = 90* very 
nearly at detachment (Chesters 1977), but for the present purposes [17] suffices. 

The volume of the bubble which detaches is slightly less than Vmx since a volume, V,,s, of 
the order of r ~ remains attached to the orifice: Vacek & Nekovar (1973). However, since from 
[15] r/R = 0(B) and from [14] Vm~, = 0(R3), 

Vresl Vmax ~" O(fl 3) [20] 

and the required correction is negligible for small bubbles. 

Bubble size at detachment: mode B 

Before determining V.x  for mode B growth (figure 4b), it is of interest to see what is the 
minimum value of ¢ reached during mode A growth. Assuming emi. to be reached when the 
plane of attachment is in the neck region, [10] is applicable: 

2fir 
sin 0 -- sin (w - ¢) -- sin ¢ = ~ a  3X" 

Since X = r = constant, emi. occurs when 

d(sin ¢) = 0 = ( - ~ + - ~ )  dR, 

making use of [8], i.e. 

r/R = x -- V(2~) = V3xl. 

This is indeed the neck region (x ~ X/0) and substitution of [22] in [21] yields 

4 . 
sin ¢~min ---" ~/(2~8) = g ~/2 --'a 

making use of [19]. Since further, from [19] and [22], 

R 2= ralX/2, 

[23] may be re-written 

[21] 

[22] 

[23] 

[241 

sin ¢,~, = 3 x 2 u 4 4 r  [25] 

For water-water vapour at 100°C and r = I0/z, for example, [25] gives Cram = 5"44' (the cor- 
responding value of # is found from [23] to be 0.003, thus amply satisfying[9]. If ~o is greater 
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than this angle therefore the bubble boundary will move outside the orifice during growth. 
However, as will be seen, it may contract into the orifice again before V.,ax is reached. 

Assuming growth to proceed according to mode B until Vmax is reached and assuming this 
situation to occur when the plane of attachment is in the neck region, [14] yields 

since, from [8], 

4 
d V = 0 =  ,r[3R2(l + B)+ R3 dB]= ~lrRZ(3+ 5fl)dR [261 

doll3 = 2dRIR. [271 

Equation [26] indicates that at the maximum volume, 

dR = 0 [281 

and differentiation of [21] making use of [28] and the fact that ~o = c,~9 = constant yields 

[ 1 2flR'~ a v  
o = - Y 2 - U  , ,1 , ,  

i.e. x -- V(2~/3) = x~. [29] 

This confirms the assumption that the plane of attachment lies in the neck region, this plane in 
fact being located at the inflexion point I (figure 1). Substitution of [29] in [21] yields 

sin ~oo = 2V'(2fl/3). [30] 

Hence ¢o is small and, to the first order in B, [30] becomes 

q'o = 2 = 2 g a radians [31] 

o r  

a 180 ~Oo = 0.0214 ~oo [32] 

if q~o is in degrees. This result was first obtained by Fritz (1935), who found 0,0208 as constant, 
based on the numerical results of Bashforth & Adams (1883). 

The corresponding bubble volume is obtained by substituting [32] in [14]: 

VII3 
. . . .  0.0172 q~o (~¢0 in degrees) [331 a 

to the first approximation. Again, the volume left attached to the orifice may in general be 
expected to be negligible so that [33] is also an expression for the volume of the departing 

bubble. 
The final contact radius, rs, is found from [29], [30] and [19]: 

rs = 4 ( 3 )  sin2 ~°°' a [34] 

rB is somewhat less than the critical orifice radius at which expansion outside the orifice first 
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begins to take place (given by [25] with ~0mi n = ~OO). This is because rB is not, in fact, the greatest 
radius reached by the bubble during mode B growth. The greatest radius, rm,~, is readily seen 
(by differentiating [21] and putting dX = 0) to be given by [22], leading to an expression like 
[251: 

rmax 9 
a = 1 6 ~  sin2 ~Oo. [35] 

The last stage of mode B growth thus involves the shrinkage of the contact radius from rmx to 
rB while V (and hence R) continues to increase. The criterion for mode B growth to proceed to 
detachment so that [33] applies is thus: 

i.e. 
r <  rB, 

, 
- < s i n  2 ~Oo, [361 
a 

from [34]. For the previous example of water-water vapour at 100°C and r = 10/z, [36] leads to 
~Oo > - 7 °. 

Expression [33] for the final bubble volume in mode B growth is of course only reliable up 
to/3 ~0.1, that is, from [301, up to q~o-30 °. 

3. THE I N F L U E N C E  OF ROUNDING OF THE ORIFICE EDGE 

The situation considered is depicted in figure 5. At all stages of growth the bubble surface joins 
the orifice surface at the natural contact angle cpo so that 

= ~Po + a, [37] 

where a is the inclination of the orifice surface to the horizontal in the plane of attachment. 
Again assuming this plane to lie in the neck region of the profile at detachment, the volume 
enclosed by the profile above this plane is given by [141. The variable volume in the orifice 
beneath the plane of attachment may be neglected since, like the volume left behind at 
detachment, it is of the order of (orifice radius) 3. The condition that the volume be a maximum 
is thus once more [28], and differentiation of [21] making use of this condition yields 

Since 

[ l 2/3R~ 
cos ¢ d~o = ~ - - ~ j  dX. [381 

dX dX 
de do, -rc cos a, [39] 

a 

Figure 5. Bubble growth on a round-edged orifice. 
~ VoL 4, No. 3-.D 
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where rc is the radius of curvature of the orifice surface in the plane of attachment, [38] can be 

written 

X = 1 (~xfl_x) . [40] 
rc cos a cos 

The L.H.S. of [40] is a function of the geometry of the orifice. For an orifice of the type 

depicted in figure 5, r,--*~ as a ~ 0  ° or 90 °, while for a = 45 °, r c -  X. These general charac- 

teristics are obtained if the following relation holds: 

r c _  1 
X k c o s a  s i n a '  I411 

where k is a constant of the order of unity. Making use of [39], [41] in fact integrates to 

X = ro[tan (a12)] -~/k. [42] 

where r0 is the radius of the cylindrical region of the orifice where a = 90 °. Substitution of [41] 

in [40], making use of [21] yields 

k sin a cos ~ = (2/3/3x) - x = sin ~ - 2x. [43] 

Squaring [43], a quadratic equation for sin ~ is obtained, leading to 

2x  -+ ~ / ( 4 x  2 + (k 2 s in 2 ot - 4x2)(1 + k 2 s in 2 a ) )  [44] 
sin ~ = 1 + k 2 sin 2 a 

Provided 

equation [44] simplifies to 

k sin a -> 2x (i.e. k sin a -> 1), [45] 

k sin a [46] 
sin ~ = ~ ( I  + k2 sin2 a)  

If however 

k sin a "~ 2x, [47] 

[43] simplifies to 

sin ~ = 2x. [48] 

The questions to be answered are: (1) Does the bubble still spread beyond the orifice (mode B 

growth) if 9o is large enough to satisfy [36], the relevant value of r now being a radius at which a = 0 
(i.e. a '~ q~o)? (2) Does a bubble grow larger in the well-wetted case (~Oo = 0, say) than it would on a 

sharp-edged orifice of radius r0? 
Beginning with the first question, when a = 0 [47] is satisfied and hence [48] applies. How 

small a has to be is seen by re-substituting [48] in [47]: 

k sin a '~ sin ~, ka < ( ~ o +  a), ( k -  l)a '~ q~o, i.e. a<~#o [49] 
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if k -  1 = 0(!). Substitution of [48] in [21] yields 

x = ~/(2~0/3) = xl [50] 

([11]). This is indeed the solution for mode B growth ([29]) and leads to the same requirement, 
namely [36]. 

Turning tO question 2, if ~o = 0 then ¢ = a and [46] simplifies to 

sin s ~ = (k s - l ) lk  s. [51] 

Equation [51] indicates that if k = oo, corresponding to a sharp edge, ~ = 90 ° and from [21] 
x = 2///3 = xN, consistent with the result obtained previously. As k is reduced ~ increases, 
becoming very small as k approaches 1. (At k = 1, however, [51] is no longer applicable since it 
predicts ¢( = a)  = 0, indicating that the condition [45], on which it is based, is no longer satisfied.) 
The corresponding value of X is found by substitution of [51] in [21], making use of [45]: 

2//R 
sin ¢ = 3 X '  [52] 

X 2_.~1[ k 2 " ~ _ 2 R 2 1 [  k s "~ 
3 V [53] 

Note that with the help of [52] requirement [45] may be written 

2//k ~, 
3x 2x, i.e. x < X/(2/3k/3). [54] 

Since [53] indicates that the largest x values are obtained for values of k close to unity, [54] 
requires.that the largest x values satisfy 

x < X/(/313), [55] 

thus justifying the initial assumption that the plane of attachment lies in the neck region of the 
profile. 

The bubble volume is obtained from [53]: 

V~,~ 4 R 3 ~ / / 'k 2 -  1'~ X 
7 = 3 z- a-~ = zTr ~ / ~ - T z -  } a "  [56] 

Making use of [42], [56] may be written 

Vmax 2¢rro [ 
7 = T - [571 

where 

f = ~ / ( ~ ' ~ - ) [ t a n  (,p12)] -uk • [58] 

f represents the factor by which the bubble volume is greater than that of a bubble formed on a 
sharp-edged orifice of radius to. Indeed with regard to bubble volume, the rounded orifice may 
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be seen as equivalent to a sharp-edged one of radius 

requ = fro. [591 

Since ~, is determined by k ([51]) so is f. As k decreases from m towards 1, f increases from 1 
towards 2. The effect of k on the bubble volume, though quite noticeable, is thus not 

astronomical. If k -< !, f could conceivably become mucl~ larger than 2 but s i n c e ,  is then very 
small the value of f attained would depend critically on the exact shape of the orifice as it joins 

the adjacent plane surface. This is not pursued here. 

4. INFLUENCE OF THE GROWTH RATE ON THE BUBBLE SIZE 

General force balance 
Considering mode A growth initially and defining "the bubble" as the gas lying within the 

control surface S (figure 6), the following equation applies at all stages of growth, whether the 

bubble is formed rapidly or not*: 

d(pa Vu) d(Vu) [601 
F = d t  - 19° dt 

where V is the bubble volume, u the velocity of its centre of gravity and t denotes time. F is 

the total force acting on the bubble and consists in general of: 

F1, the weight of the bubble poVg; 
F2, the surface tension force 2,rro" sin ~o, 
F3, the force due to viscous stresses (normal and tangential) on S; 
F4, the force due to pressure variation over S associated with any liquid flow; 
~ ,  the force due to the hydrostatic component of the pressure variation over S. 

The slow-formation case 
F5 is equal to the Archimedes buoyancy force pLVg, corrected for the fact that the 

hydrostatic pressure in that part of S lying in the gas is in general different from the pressure in 

the liquid: 
F5 = PL Vg + 7rr2(p6 - PL)orifice 

= PL Vg + ~rr2(2~4R - p g h )  [611 

where h is the height of the bubble (figure 6). For a bubble detaching under slow-formation 

conditions the relative magnitude of this correction term is 

¢rr2( 2oq R - pgh ) _ p Vmaxg( r/ R )[ l - /3(h/2R)] 

PL Vmaxg PL Vmaxg 

= 2p /311 - B ( h / 2 R ) ]  = 0 ( ~ ) ,  
3pr 

[621 

Figure 6. The control surface S. 

tThe momentum of the flow of liquid through S required to satisfy vaporisation in the case of vapour bubbles is 
assumed negligible. 



MODES OF BUBBLE GROWIH IN NUCLEATE POOL BOILING 289 

making use of [17], [15] and the fact that hl2R = 0(I). The correction is thus small and, to the 
first approximation, may be neglected: 

Fs ~- pL Vg, 1631 

In addition F3, F4 and the R.H.S. of [60] are negligible and making use of [63] and the fact 
that ~o = 90 ° very nearly at detachment, [60] yields 

pagV + 2~rrcr = aL Vg. 

leading to [17] and indicating that the buoyancy force ~ and the surface-tension force F,_ are 
almost equal. 

The rapid-formation case 

When a bubble is formed rapidly the rise of the bubble leading to its detachment is impeded 
by the inertia of the surrounding liquid (i.e. F4 becomes appreciable). The bubble therefore 
grows to a greater size before detaching and the buoyancy force becomes still larger while the 
correction term becomes smaller (since R is larger:J61]). Appi'oximation [63] thus becomes 
even better, while the surface tension term F., becomes small in comparison with the buoyancy 
term: 

F2 ~ Fs. [64] 

Further, since OL ~' PG, 

and 

since, as will be seen, 

F, .~ ~ [65] 

p~ d ( ~  - - - 2  ~ F,, [661 

F4 
d( Vu ) 

aL ~7 " [671 

Making use of [64], [65] and [66], [60] simplifies to 

F3"+ F4 + F.~ = 0. [68] 

For the present, the viscous force F3 will also be assumed small in comparison with the other 
forces, yielding 

F4 + F5 = 0. [69] 

The resistive inertial force F4 acting on a sphere accelerating in an unbounded inviscid liquid 
can be shown to be 

F4- d(mvj,~u) 
dt ' [70] 
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where the "virtual mass" mvin is given by (Milne-Thomson 1968) 

1 
rnv~, = ~pLV. [71J 

z~ 

Although the actual bubble will not be completely spherical and grows in liquid bounded on the 
underside, the general trends and orders of magnitude predicted by [70] and [71] (which lead to 
[67]) may be expected to be correct. 

Davidson & Harrison (1963) have shown that for the case of a constant growth rate, 

dV 
dt G = constant, [72] 

substitution of [63], [70] and [71] in [69] leads to 

and 
u=gt  

(6)" 
Vmax = 7"  173] 

the criterion of'detachment being that the height of the bubble centre above the orifice becomes 
equal to R. 

Since [73] no longer includes surface-tension effects it may also be expected to apply to 
mode B growth at sufficiently high growth rates. 

For bubbles formed at high, constant gas flow rates on vertical tubes [73] provides a 
surprisingly good prediction of the observations (Davidson&Harrison 1963). Since V ~  
increases almost linearly with G the bubble frequency remains approximately constant. 

Transition from slow to rapid formation 
An indication of the value of G at which Vmax begins to increase significantly should be 

provided by the point P (figure 7) at which the bubble size predicted by [73] equals thal 
predicted by the slow-formation theory: 

o r  

/ ~ \ 1/5 /,~615 
. . . .  i t  21rrtr (mode At) [74] 

= (0.0172 a~oo) 3 (mode B). [75] 

In the case of vapour bubbles formed during nucleate pool boiling the growth rate is 
governed by thermal conduction, except initially or at sub-atmospheric pressures, and the order 
of magnitude of G may be obtained from the simple expression for the conduction-governed 
growth of a bubble in an initially uniformly superheated region (Plesset & Zwick 1954): 

giving 

where 

R = B~,/t [76] 

2dR G = 4~'R ~ = 2rrB2R [77] 

2rrB 2 = 24kLPLCL(A T/ipa)2 [78] 

tFor a round-edged orifice, r must be replaced by requ: [59]. 
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V.~x / e q u .  [73] 

. ,~ - - - -  slow formotion 
. / p  [17] or [33] . t  

I 

Figure 7. Onset of inertial effects in bubble growth. 

(kL, CL, i and AT respectively liquid thermal conductivity and specific heat, latent heat of 
vaporisation and liquid superheat). 

Consistent with the approximation of uniform superheat AT, the value of AT is related to 
the cavity radius r (to for the case of a well-wetted, round-edged cavity) by the well-known 
relation 

T 2~r 
AT=ipG r ' [79] 

where T denotes the absolute temperature, and the specific volume of the liquid 1/pL has been 
neglected in comparison with that of the vapour, IIpG. 

In defence of the uniform-superheat approximation it should be remarked that while a steep 
variation of temperature with distance from the wall in general exists in the undisturbed liquid, 
in the immediate vicinity of a vapour bubble this variation is far less pronounced (Beer 1971) 
since the vapour bubble acts as a heat pipe, with a strong tendency to eliminate temperature 
variations over its surface. The fairly uniform surface temperature thus obtained is of course 
considerably lower than the wall temperature. 

Combining [77]--[79], 

where 

KIR 
G = ~ [80] 

K, = 96ktpLCL(To'/i2) z. [81 ] 

Substitution of [80] in [74] making use of [16] for R, or in [75] making use of [32] for R, gives 

where: 

and 

where 

rSl2_ 4 ,:,-itpG = K2 (mode A), 

K2 = K,l[lr(813)tt3 ag "z] 

r~itpo 4 = K3 (mode B), 

K3 = 0.0107(6/~')It6Ktl[(0.0172)st2 glt2(a~po)31z ]. 

[82] 

[831 

[841 

[85] 

The implications of the above equations are most easily illustrated by an example. For a 
given liquid KI, K2 and/£3 are approximately constant. For water Ke= 1.3x 10-13kg4m -~9/z 
based on its physical prol~rties at 100*C, and for mode A growth at atmospheric pressure [82] 
yields rc~, = 16/~. For cavities of this order or larger therefore, growth will be approximated by 
the slow-formation theory, the bubble volume increasing linearly with the cavity dimension 
[17]. Cavities appreciably smaller than 16/~ in radius will grow bubbles according to the rapid 
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growth theory: 

R 3 ~ Wmax oc G 6/5 [R~6/s oc k~,] ' from [73] and [80] 

R oc r -4" [861 

Vmax ocr -4. 187t 

The bubble volume thus increases (rapidly) as r decreases. The bubbles of minimum volume 

will evidently be formed on cavities of radius - 16/zm. 
The influence of increased pressure is to raise pc and hence to lower the value of rcr,: 

+ + s ,  ~ _-s /5  [881 rcri t oc pG ~ Pabs • 

At high pressures the value of rcrit is thus likely to be so low that growth on all active cavities is 

governed by the slow-formation theory. 
Essentially the same results are obtained for mode B growth, the value of rcr., being different, 

but of the same order. 
Before passing on to viscous and thermal effects a possible flaw in the foregoing reasoning 

should be checked out. It is known that the initial, dynamically-controlled growth of bubbles 
often produces a flattening of the bubble into a hemispherical form (figure 8). The "microlayer'" 
of liquid between bubble and wall then partially evaporates, leaving the three-phase contact line 
o u t s i d e  the cavity during further growth. In appendix 1, however, it is demonstrated that the 
condition that final growth should be "slow" is also a sufficient condition that microlayer 
formation should not take place. This conclusion is confirmed experimentally. 

5. T H E  I N F L U E N C E  OF V I S C O S I T Y  ON B U B B L E  G R O W T H  

In the absence of externally imposed liquid flow (forced convection) the influences of 
viscosity on vapour bubble growth are of three types: (1) normal viscous stresses associated 
with the expansion of the bubble: (2) tangential viscous stresses associated with surface-tension 
gradients; (3) viscous effects associated with the rise of the bubble ("drag"). 

Since, as already noted, expansion is in general controlled by thermal conduction rather than 
dynamic effects, influence l is not likely to be of interest here. Influence 2 is considered in the 

next section. 
Influence 3, the drag force, is of possible importance at high growth rates. In the first place it 

is worth noting that this force probably changes sign during the course of bubble growth since 
initially the wake of the previous, departing bubble causes an updraft of liquid. This in itself 

reduces the net effect. 
The drag force on an approximately spherical bubble at Reynolds numbers considerably 

greater than unity is smaller than that on a solid sphere since the flow does not separate (Moore 

1963): 
Faro+ = - 127r/zLRu [891 

Ca) (b) 
Figure 8. Early stages of bubble growth (a) surface tension dominant (b) liquid pressure dominant. 
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where/~L is the dynamic viscosity. Equation [89] neglects the possible influence of expansion 
on the drag, as indeed is done in the case of a rising bubble. This may be expected to be 
reasonable provided the radial velocity, u,, is small in comparison with the rise velocity, u. 
Assuming the correct order of magnitude of these velocities to be given by the theory of the 
preceding section. 

and 

dR G 
ur dt 41rR ~ 

u = ~/(2gR), 

since the bubble centre accelerates at g, so that 

u, 1 G 

4 
However, substitution of Vmax = ~ 7rR 3 in [73] indicates that at detachment, 

G 47r~/2 
6 

[9o1 

[91] 

[92] 

so that [91] gives 

u, I 
u 6 [93] 

and [89] should be a good approximation. Comparing Fd,~ with the buoyancy force Fs, 

F d ~ =  121r#LRu 
F5 4/3~rRapLg " 

making use of [90] the value of this ratio at departure of the bubble is found to be 

F ~  = 18/t L 18 
Fs pLR V(2gR) ffi R-~ " [94] 

where Re is the Reynolds number at .detachment, based on the bubble radius. In general 
R -> 0.5 mm. Taking the example of water at 100°C, [94] thus yields Fer~/F~ <- 0.1 (and Re ~ 180, 
validating the use of [89]). The influence of Fd,q is thus likely to be minor in the case of water 
and other low-viscosity liquids. 

6. THE INFLUENCE OF SURFACE-TENSION GRADIENTS 

A vapour bubble acts as a heat pipe, tending to equalize the temperature over its surface. 
Some variation however, of the order of I°C, remains (Beer 1971). The resulting surface-tension 
gradients produce a net force on an element of surface which has to be balanced by a shear 
stress, ~, exerted by the adjacent liquid since the mass of "the surface" is negligible. The 
surface moves in such a way as to produce this shear stress and in fact jets the adjacent layer 
of liquid away from the wall (figure 9). The resultant viscous force on the bubble (directed 
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/l l ll#~lJ # lli, i 
Figure 9. Production of hot jets by surface-lension gradients. 

towards the wall) is: 
t" 

FsT = J r  sin 0 2zrX ds 

= ~s  sin 0 21rXds 

= f21rX sin 0 d~ - RAo 1951 

where ds is the width of an annular strip of the surface (figure 9), and Ao is the surface-tension 
difference between top and bottom of the bubble. 

Comparing Fsr with the buoyancy force Fs, 

Fsr RAo Atr 
F5 4 rtR3 pLg ~rptg"  

3 

[961 

For water at 100*C, with R ;~ 0.5 mm and Act corresponding to I°C, [96] gives FsrlE~ < 0.02, 
indicating that Fsr may safely be neglected in the first approximation. 

7. COMPARISON WITH POOL BOILING RESULTS 

Boiling on large, sharp-edged cavities at atmospheric pressure 
Howell & Siegel (1966) produced bubbles in water at atmospheric pressure on artificial. 

circular, sharp-edged cavities in heated steel strips. The cavity radii ranged from 50 to 500/~m 
and in all cases growth was according to mode A. In accordance with the preceding theory, 
both the profiles and departure volumes of the bubbles agreed well with the slow-formation 

theory.t 
The fact that mode A occurred, however is anomolous: according to [36] mode A growth 

requires that ~po< 15 °, whereas Ponter et al. (1967a, 1967b) found ~po = 65 ° at 20°C and affirmed 
that ~Oo varies but slowly with temperature. The explanation probably lies in the well-known 
slowness of a contact angle to adjust itself to its equilibrium value when this involves the 
macroscopic motion of the three-phase boundary over a solid surface. The time available for 
this motion may be obtained as follows. 

From [76], making use of [77], [80], [821 and [83], the total growth time of the bubble, tg,, is 

given by 
tg, = R21B ~ 

= 21rR31G 

= 2~.R2po4r21Ki 

3tnRer 2 
[97j 

1"Since, however, the population of attifigial sites was very sparse, the effective value of AT would be expected to be 
higher than thai given by [79], though still smaller than Tw,,,- T~,,.. This is borne out by the measured growth rates. The 
corresponding value of  r,~ is thereby somewhat increased: 
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From [16] and [19], 

R = (3ra2/2) 113 [98] 

and [97] may be re-written 

where 

3(a/4) rc,, 
t~, = gin .x,r~d 

= K4(r] rcrit) s13 [ 9 9 ]  

"~l _ /A~ 1/3 _ 1/6 t _ 112 K4=.,~Ul.tl r c r i t l g  . [ 1 0 0 ]  

For slow growth r must be greater than rcrit and for a given liquid and a given rlrc,t value, t~, 
is seen to be approximately independent of the condition of boiling (i.e. of the pressure), since 
K4 is insensitive to the values of a and rent. For water, K4 ~ 10 -2 s, based on the value of r~.t 

(16#) found previously for atmospheric pressure. Only a fraction of t s, is available for 
expansion of the three-phase boundary (i.e. during only a fraction of tg, is to less than too). 

In the appendix 2 it is shown that except for very small values of too( ̀< 100) 

AV 
Vma-----~ = sin q~0, [101] 

where A V is the increase in bubble volume during the phase of growth in which ~o < too. For 
too-> 90 °, all of t~r is therefore available for expansion of the three-phase boundary; for smaller 
too the time available, texp, is smaller, but of the same order: 

where 

texp = sin tooK4(rtrcrit) 8/3 

= Ks(drcrit) s/3, [lO2] 

K5 = sin tooK4. [103] 

The experiments of Howell & Siegel suggest that t=xp is insufficient for mode B growth to 
occur up to r / r e f i t  ~ 3 0 (  = 500 #/16 #) for too = 65 °. 

Boiling on large natural cavities at atmospheric pressure under normal and reduced gravity 

The size and shape of bubbles formed in water at atmospheric pressure on natural 
nucleation sites in a nickel surface was. studied by Siegel & Keshock (1964) under normal and 
reduced gravity. Although attempt was made to correlate the results with the mode B formula 
[32], it is evident from the photographs that the bubbles did not spread beyond the cavities. This 
is illustrated in figure 10 by the tracings of a bubble growing in 6.1% of normal gravity. The final 
bubble size leads to/]  = 0.134 and according to mode B theory the contact diameter with the 
heating surface should then be 0.3 times the bubble diameter. In reality the contact diameter is 
virtually constant during growth and accords much better with the value of 0.09 times the final 

in. 

Figure 10. Bubble growth in reduced gravity (Siegel & Keshock 1964)o 
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diameter predicted by mode A theory. The corresponding cavity radius proves to be 340 ~m, 
confirming that the slow-formation theory should apply. In the absence of contact-angle data on 

nickel surfaces no statement can be made about which mode should have occurred according to 
the criterion [36]. 

A further, indirect confirmation of the mode A growth is the g dependence of R~,,t. For 
mode A this should be 

and for mode B 

R~.al ~ g- ~l~ [104] 

Rfi,,i ~ g-1/2. [1051 

The observations are best approximated by [104] down to g - 1 0 %  normal, after which 

successive bubbles tend to merge. 
The fact that the authors nevertheless successfully correlated the bubble departure 

diameters with the mode B, equation [32] demands an explanation. In this and many other 
experiments, the angle ~o (figure 3b) was interpreted by the experimenters as the natural contact 

angle q~o, despite its variation during growth and from site to site. The value assigned to ~oo in [32] 
was that observed just prior to departure. Since the dimensions of the neck region are so small 
(- /3R) that it is barely visible this value of ~o0 was probably close to that in the last, fairly straight 

portion of the profile, namely q,1.f This, coincidentally, is exactly the contact angle required to 
obtain agreement'with the mode B theory since the final plane of attachment in mode B growth is 

the plane of the point I ([29]). 

Boiling at low pressures 

Experiments at pressures well below atmospheric indicate that bubbles formed on all 

cavities are very large (e.g. Cole & Shulman 1%6), confirming the implications of [82] and [84] 
that rcr~t becomes very large. Since growth is not "slow" these results are not discussed further 

here. 

Boiling on natural cavities at high pressures 

The average size of the bubbles formed on various metal surfaces at atmospheric and higher 

pressures was measured by Tolubinsky & Ostrovsky (i%6). The heat fluxes used were low in 
order to produce few active cavities. The results for water are reproduced in figure I I and 

agree, globally, with the expectations. Thus, the bubble size falls off sharply at first and then 

3.01 

2R 
m m .  

2.1: 

1.1: 

0 1 

\ 
\ 

2 3 4 5 6 
p bat 
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7 8 9 10 

Figure I 1. Bubble departure sizes at high pressures (Tolubinsky & Ostrovsky 1966). 

• tThe authors themselves say that "it was very difficult to make accurate contact angle measurements because extreme 
clarity and high magnification are required before one can tell whether the actual contact angle at the root of the bubble is 
being measured rather than the slope of the bubble close to the root". 
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levels off, as would be expected if growth becomes governed by the slow-formation theory. A 
certain residual slope is to be expected due to the decrease of surface tension with temperature 
but the actual slope is too great to be explained solely by this effect. The possibility suggests 
itself that the larger cavities fill up under the influence of the pressure and that, to maintain the 
heat flux, the superheat increases and smaller cavities become active. Certainly the authors 
state that more cavities are active at the higher pressures, and the assumption of mode A 
growth leads to cavity sizes of less than 1 #m at the highest pressures. In view of such possible 
complications no further conclusions can be drawn. 

8. CONCLUSIONS 

(1) The size of a gas bubble formed slowly on a round, sharp-edged horizontal orifice under 
isothermal conditions depends on whether the bubble remains confined ,'o the orifice ("mode 
A") or spreads beyond it ("mode B"). This in turn is decided by the magnitude of the natural 
contact angle ~Oo ([36]). For small orifices simple analytic expressions for the bubble volumes may 
be obtained ([17] and [33]), that for mode B agreeing with the well known numerical result of 
Fritz (1935). 

(2) The situation for round-edged orifices is similar, the size of the bubble formed in mode A 
growth (in which the contact radius of the bubble changes during growth but remains within the 
orifice) being the same as that formed on a sharp-edged orifice of somewhat larger radius, r~, ([59]). 

(3) For sufficiently high growth rates the inertial forces associated with acceleration of the 
surrounding liquid become of influence and the bubble volume begins to increase with 
increasing growth rate. For vapour bubbles formed in nucleate pool boiling inertial forces are 
important if the cavity radius is less than, or of the order of, that given by [82] (mode A) or [84] 
(mode B). Growth may be expected to be "slow" on most cavities at high pressures and "rapid" 
on most at low pressures. 

(4) The criterion for growth to be "slow" is also a sufficient condition for microlayer 
formation not to occur. 

(5) The influences of viscous forces and surface-tension gradients on bubble growth may in 
general be expected to be slight for low-viscosity liquids such as water. 

(6) Data on nucleate pool boiling of water confirm the above expectations with the exception 
that mode B is not obtained under conditions when it would be expected (i.e. "slow" growth, 
with ~0o considerably greater than the minimum contact angle attained). This is attributed to the 
well known slowness of spreading of a three-phase boundary. An analysis of the time available 
for spreading indicates that this is of the same order at all pressures for a given value of r/rc~t 
(the ratio which determines whether growth is "slow" or not) and it thus appears likely that the 
Fritz mode of growth (mode B), on which so many heat transfer correlations are based, never in 
fact occurs in the case of water. If so, the same conclusion would be expected to apply to 
low-viscosity organic liquids. 
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A P P E N D I X  1 

MIROLAYER FORMATION IN EARLY STAGES OF GROWTH 

Criterion for microlayer formation 
Microlayer formation is a result of deformation of the bubble from the spherical by the 

liquid-pressure distribution over its surface associated with its growtht (figure 8). 
An appropriate criterion for the formation of a microlayer should therefore be 

Ap ~ 2tr/R, [AI.I] 

where Ap is the order of the liquid-pressure variation over the bubble surface. Ap may also be 

expressed as 

Ap = (PA - P~) - (P8 - P~) 

where A and B are two widely separated points on ~he bubble surface and p® is the pressure in 
the undisturbed liquid far away. 

tFor  simplicity the additional pressure variation due to gravity is ignored. 
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Since p~ - p= and Pa - P= are of the order of pLR z where R is the order of the radial expansion 
velocity, 

Ap <- pLR z [AI.2] 

and [AI.I] becomes 

pLR ~ ~ 2o~R. [AI.3] 

Magnitude of R 
The order of magnitude of the terms in [A1.3] may be obtained from .their values for a 

spherically symmetrical expansion. Three regimes will be considered. 
(1) R ~, Ro, but expansion still dynamically controlled. 
Then (Plesset & Prosperetti 1977), 

20" -- 3 ~ 2  : 

R is thus constant. [AI.I] and [AI.4] yield 

20,/R0), 2oI R, 
i.e. 

o r  

RIRo~, l 

R/r~  I 

[AI.43 

[AI.S] 

since in the context of wall growth Ro = r (the cavity radius). This criterion for microlayer 
formation is thus satisfied if the dynamically-controlled regime persists to r values much greater 
than the cavity radius. 

(2) R ~ Ro, and expansion thermally controlled. 
Then (Plesset & Prosperetti 1977), 

and 
R = KX/t 

= K]2~/t = K2/2R, [AI.6] 

where K is a constant depending on the cavity radius and the liquid and vapour properties. 
Substitution of [AI.6] in [AI.3] yields 

oLK2= 20" 
3 - ~  p ~-" [AI.7] 

The L.H.S. diminishes more rapidly with increasing R than the R.H.S. so if microlayer 
formation has not yet occurred on entering the thermally-controlled regime, it never will. 

(3) R ~, R0, transition from dynamic to thermal control. 
At transition, 

Hence, from [AI.4] and [AI.6] 
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R l r - - ~ 4 ( ~ r )  or R / r ~ - 4 ( ~ r  ). [A1.8] 

The transition point provides the largest R value in the dynamic regime and so the greatest chance 
of microlayer formation. 

Substitution of [A1.8] in [AI.5] results in 

K 2 >> 4V'(~rr/3pt). [A1.9] 

Magnitude of K in the slow-.formation regime 
The volume growth rate, Gcrit, at which the slow-formation model breaks down is given by 

[74] or [75]: 

/ ~  \1/5 (-g6/5 
v ~ c r i t  4 3 

~ ' ~ )  7 = Vma x ----" ~ , / r e  . . . .  [AI.IO] 

From [A 1.61, 

G = 4~tR2R = 21rK2R. 

Substitution of [AI.I 1] in [AI.10] yields 

K: X/(2g) l~312 "- 4(-~ff ) .  w'12 = ~ " -~max -- --max. 

For mode A growth ([17]), 

and [AI.12] becomes 

Vm~x = 2 zrral pg = 2*rral pLg 

[AI.III 

[Ai.121 

[AI.131 

K 2 = X/(rcr/3pL). [Al.14] 

The condition that the slow-formation theory be valid is thus 

K 2 ~ X/(rtr/3pD. [AI. 15) 

CONCLUSION 

From [AI.91 it is seen that [AI.15] is a sufficient criterion for microlayer formation not to 
occur. Evidently under the conditions concerned in the slow-formation regime, growth is 
thermally controlled from the beginning. This is not surprising since for typical cavity sizes the 
pressures involved are atmospheric and upwards. 

In the case of mode B growth [Al.13] can be replaced by 

V,,,ax = (0.0172 a~po) 3 = n(2rtnrlptg) [AI.13'I 

yielding 
K 2 ~ X/(nr~13pL). [A 1.15'1 

For ~oo ~< 30 °, as assumed in the various expressions in the main body of the paper, and typical 
cavity sizes, X/n is found to be of the order of unity and the same conclusion therefore applies, 
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These conclusions are confirmed by the observations of Johnson et ai. (1966) that bubbles 
formed in water are round or only slightly distorted at atmospheric pressure and only become 

hemsipherical at low pressures• 

APPENDIX 2 
F R A C T I O N A L  G R O W T H  W H I L E  ~ < ~ o  

For mode A growth and values of ¢o greater than 90 °, ¢ becomes smaller than tpo in the 

early stages of growth and remains so (figure 4a). For q,o < 90 °, q, again falls below tpo in the 
early stages of growth, reaches a minimum and then rises above ¢o before detachment occurs 
(at which point ~, = 90°). The second point at which ~, becomes equal to 9o occurs after ~Omin has 
been reached and the plane of attachment therefore lies in the neck region. From [21], 

therefore, 

yielding 

• r + 2/32R2 
sin ¢o = R-~ 3r 

__r = sin ~bo-4- X/(sin 2 g,o-  8//2/3) [A2.1] 
R 2  2 

Except for very small ¢o values (¢o -  ~01 - 10 °) 

sin 2 ~Oo >> 8fl2/3 [A2.2] 

and [A2.3] reduces to 

r =  sm~oo [I -+ (I - (4/h/3)/sin z ~o)] 
R, L 

[A2.31 

2/32 [A2.4] 
3 sin ~o' 

the negative sign applying on the neck side of the inflexion point, I (figure 1). Re-arranging 
[A2.4], 

4 3 V2 = "~ err = 21rra 2 sin ~o [A2.5] 

and from [18] (or from [A2.5] with 9,0 = 90°), 

V2/Vmx = sin q~0• [A2.6] 

Choice of the positive sign in [A2.3] yields the point at which ~ first becomes equal to ~o, 
when the plane of attachment lies on the apex side of the inflexion point I. For large values of 
~o use of the neck solution in this case gives only an order of magnitude for the corresponding 
bubble volume VI but this is sufficient since V, will be seen to be negligible. Thus, from [A2.3], 

yielding 

MF Vol. 4, No. 3----E 

r 

4 
V, -< ~ ~(r/sin ~o) 3 
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and 

Since r ,~ a and sin ~o = O(1) 

and 
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3 r 2 
V d V2 ~ 5 - - ~ - 3 - - - .  

a -  s i n -  ~Oo 

VdV2~. I 

A V _ V2-  V~ V2 = sin ~Oo. 
Vma~ Vmax Vma~ 

For ~0o -~ 90 °, V2 = Vma~ and A VI Vmax ~- 1. 

1A2.7] 

[A2.8] 


